Harmonic Functions for Data Reconstruction on 3D Manifolds

نویسندگان

  • Li Chen
  • Feng Luo
چکیده

In computer graphics, smooth data reconstruction on 2D or 3D manifolds usually refers to subdivision problems. Such a method is only valid based on dense sample points. The manifold usually needs to be triangulated into meshes (or patches) and each node on the mesh will have an initial value. While the mesh is refined the algorithm will provide a smooth function on the redefined manifolds. However, when data points are not dense and the original mesh is not allowed to be changed, how is the “continuous and/or smooth” reconstruction possible? This paper will present a new method using harmonic functions to solve the problem. Our method contains the following steps: (1) Partition the boundary surfaces of the 3D manifold based on sample points so that each sample point is on the edge of the partition. (2) Use gradually varied interpolation on the edges so that each point on edge will be assigned a value. In addition, all values on the edge are gradually varied. (3) Use discrete harmonic function to fit the unknown points, i.e. the points inside each partition patch. The fitted function will be a harmonic or a local harmonic function in each partitioned area. The function on edge will be “near” continuous (or “near” gradually varied). If we need a smoothed surface on the manifold, we can apply subdivision algorithms. This paper has also a philosophical advantage over triangulation meshes. People usually use triangulation for data reconstruction. This paper employs harmonic functions, a generalization of triangulation because linearity is a form of harmonic. Therefore, local harmonic initialization is more sophisticated then triangulation. This paper is a conceptual and methodological paper. This paper does not focus on detailed mathematical analysis nor fine algorithm design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Plurisubharmonic Functions and the Structure of Complete Kähler Manifolds with Nonnegative Curvature

In this paper, we study global properties of continuous plurisubharmonic functions on complete noncompact Kähler manifolds with nonnegative bisectional curvature and their applications to the structure of such manifolds. We prove that continuous plurisubharmonic functions with reasonable growth rate on such manifolds can be approximated by smooth plurisubharmonic functions through the heat flow...

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

Quasiconformal Harmonic Maps into Negatively Curved Manifolds

Let F : M → N be a harmonic map between complete Riemannian manifolds. Assume that N is simply connected with sectional curvature bounded between two negative constants. If F is a quasiconformal harmonic diffeomorphism, then M supports an infinite dimensional space of bounded harmonic functions. On the other hand, if M supports no non-constant bounded harmonic functions, then any harmonic map o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1102.0200  شماره 

صفحات  -

تاریخ انتشار 2011